80GHz FMCW RADAR LEVEL SENSOR

Operating Manual

Version:202503

Table of Contents

1. Products Introduction2
2. Technical Specifications2
3. Dimensions
4. Installaion Description4
4.1. Install4
4.2. Wiring
4.2.1. Wiring diagram for two-wire current output and RS485 output6
4.2.2. Wiring diagram for dual output and relay output
4.3. Debugging6
5. Menu Parameter Description7
5.1. List of menu parameters7
5.2. Basic settings menu introduction
5.3. Display menu introduction12
5.4. Diagnosis menu introduction14
5.5. Service menu introduction14
5.6. Info menu introduction19
5.7. Uart config menu introduction (this parameter is not available for two-wire
instruments)19
5.8. Alarm setting menu introduction (this parameter is not available for two-wire
instruments)20
6. Fault Parameter Description21
7. Register List21
7.1. Read variable values
7.2. Common parameter register

Due to the continuous updating and upgrading process of the product, we cannot guarantee that the content covered in this manual is the latest version. However, even if this situation exists, the information provided in the manual can still meet your usage needs and will not have a substantial impact on your reference and use of the manual.

1. **Products Introduction**

Features

The 80G FMCW radar level transmitter is a powerful tool for industrial level measurement. It is based on 80G frequency modulation continuous wave technology and can accurately measure the height of the material level. It operates in the high frequency range, with high resolution and measurement accuracy up to ± 1 mm. The beam angle is only 3 ° -6 °, which can avoid measurement errors and false echoes. Strong anti-interference ability and stable data output even under harsh working conditions. Moreover, it is easy to install and maintain, with a wide range of applications, making it a high-quality choice for improving production efficiency.

Technical Specifications 2.

Working power supply	(17~36) VDC
Working temperature	-40 °C -70 °C
Cable entry	M20 * 1.5
Shell material	Die cast aluminum
Protection class	IP68
Installation method	Thread/flange
Onsite operation	LCD display with 4 buttons
Communication method	RS485/HART 7 Bluetooth 5.0
Current output	4-20mA
Maximum range	120m
Measurement accuracy	Up to ± 1 mm (depending on range)

3. Dimensions

4. Installation Description

4.1 Install

Power supply: Ideally, this device is powered by a DC24V power supply and can support a minimum of DC17V.

The main concern of installation is to aim to the material surface vertically and on the other hand to avoid false echoes. Typical scenes are list below for correct installation.

■ Keep the antenna beam free of any interference such as ladders, pipes, steps, as shown in Fig.1.

Fig.1 Example for avoiding false echo

Avoid the contact between antenna beam and feeding flow, as shown in Fig.2.

Fig.2 Example for avoiding false echoes

At least 200mm away from the wall for avoiding false echo and measuring mistake.

Fig.3 Example for avoiding false echo

Aiming the antenna beam to the bottom of tapered vessel for avoiding false echo when the level is at the bottom of the tapered vessel.

Fig.4 Example for avoiding false echo

Moisture protection measures: For instruments installed outdoors or in damp rooms, as well as on cooling or heating tanks, tighten the cable sealing cover to prevent moisture and bend the cable downwards at the entrance.

Fig.5 Moisture protection

4.2 Wiring

It is recommended to use a single multi-core cable with a diameter of 6-12mm for the instrument inlet. Single core wire diameter 24-14AWG 2.5mm2, using a 2-3mm flathead screwdriver with a screw torque of 5.0Kgf.cm, wire according to the label definition in the following figure.

Attention: The voltage of the main power supply must be within a reasonable range to avoid permanent damage.

4.2.1 Wiring diagram for two-wire current output and RS485 output

4.2.2 Wiring diagram for dual output and relay output (SPST 2A)

4.3 Debugging

- Set Min. and Max. adjustment parameters according to the actual environment, refer to sections 5.2.1 and 5.2.2.
- Set damping based on material fluctuations, refer to section 5.2.4.
- Set blind zone set to facilitate normal measurement, refer to section 5.2.8.
- Set the current output mode, usually 4-20mA output mode, refer to section 5.5.2.
- At this point, the device should be able to work normally. If you need to adjust other parameters, please refer to Chapter 5.

Attention: After all function debugging is completed, tighten the gland head at the instrument cover and cable, and do a good job of waterproofing.

5. Menu Parameter Description

5.1 List of menu parameters

	Menu item	Parameter range	Description
	1.0 Min. Adjustment	0-120m	The farthest distance that needs to
			be measured, a range value of
		0.100	current output
	1.1 Max. Adjustment	0-120m	The closest distance that needs to
			be measured is another range value
	1 2 Modium	Solid/Liquid/Domonstration	of the current output.
Dente Gettingen	1.2 Medium 1 3 Damning		The higher the value, the slower the
Basic Settings	1.5 Damping	0-1003	response. Generally set 5.
	1.4 Sensor Tag	DAR	
	1.5 Scaled	Linear/ Nonlinear/ Volume	
		Scalar/ MassScalar	
	1.6 Scaled Value	1	
	1.7 Range Set	0-120m	Farthest measurement distance
			value
	1.8 Blind Zone Set	0-120m	Areas without measurement
	1.9 Feed Rate	0-999m/s	Related to the speed of material in
	1 10 OronlimitOutnut	Min Adjustment/	and out.
	1.10 OverninitOutput	Max Adjustment	
	2.0 Display Content	Distance/ Snace/ Level/ Scaled/	Display content of LCD
		Current/ Percent	measurement interface
	2.1 Language	Chinese/English/Spanish/Russi	The language displayed on the
		an/Korean	LCD screen
Display	2.2 Measuring Unit	ft/m/in/cm/mm	Measuring unit of LCD
			measurement interface
	2.3 Temperature Unit	°C/°F/K	Temperature unit of LCD
	2 0 D 1- V - 1		measurement interface
	5.0 Peak value	/	the maximum and minimum
Diagnosis	3 1 Measure Status	1	Measure the decibel and internal
Diagnosis	on measure status	,	temperature values of the signal
	3.2 History Curve	Total Time/ Show Curve	
	4.0 False echo	Update/ Delete	Suppress the impact of interference
			signals on normal measurements.
	4.1 Current output	Output Mode: 4-20mA/20-4mA	Choose whether the current output
		Fail Current: Keep/ 20.5 mA/	is from Min. Adjustment to Max.
		22.0mA/ 3.9mA	Adjustment or from Max.
		Min Current: 5.9mA/4mA	The value of current output when
			the instrument malfunctions
Service			Minimum current output
	4.2 Reset	Factory Reset/ Peak Reset	I
	4.3 Par backup	Data Backup/ Data Reading	After making parameter backups,
			the backed up parameters can be
			restored by reading them.
	4.4 Password	Disable/ Enable	When turned on, the menu is
			protected and requires a password
			tor modification. If you forget your
			password, you can obtain the

			unlock password from the
			manufacturer through the serial
			number.
	4.5 Local address	HART: 0-15; RS485: 1-254	Hart is effective for two-wire
			instruments.
			Hart and RS485 are effective for
			four-wire instruments.
	4.6 Offset distance	±10.000m	Datum Shift
	4.7 Current simulation	3.8-22mA	Current output test
	4.8 Current calibration	4mA /20mA calibration	Fine tune the current output value.
	4.9 TVT level	N dB	TVT curve height adjustment
	5.0 Sensor Type	TR-80GFXC	Fixed value, non modifiable
	5.1 Serial Number	VVVVVV	7-digit number, one machine, one
Info			code
	5.2 Date	YYYY-MM-DD	Date of instrument production
	5.3 Software Version	XX.XX.XX	Software identification mark
Uart	6.0 Baud	1200 200000	The speed of RS485
Config(Only		12002000000	communication
485	6.1 Parity	Nono/Odd/Evon	RS485 communication checksum
instrument is		None/Oud/Even	selection
valid)	6.2 Stop Bit	1/1 5/2	RS485 communication stop bit
,		1/1:3/2	selection
	7.0 Alarm Setting	Alarm Channel 1/Alarm	Select the alarm channel for setting
Alarm		Channel 2	
Settings(Only	7.1 Alarm Mode	Close/Upper Limit /Lower	Alarm mode selection
485		Limit	
instrument is	7.2 Initial State	NO/ NC	Select the initial state of the relay
valid)	7.3 Alarm Value	XXX.XXX	Alarm value setting
	7.4 Hysteresis Value	XXX.XXX	Return difference setting

5.2 Basic settings menu introduction

5.2.1 Min. Adjustment

Display of button operations: After pressing the [OK] button on the main interface, you will enter the menu interface. On this interface, find the basic settings interface and press the [OK] button to enter the basic settings interface. In the basic settings interface, press the [▶] button to find the min adjustment interface. Press the [OK] button again on this interface to enter the parameter settings interface. You can adjust according to the required parameters.

Graphic and text instructions: Set the min adjustment to 30 m.

►	Basic Settings	Min. Adjustment	Min. Adjustment	
	Display Diagnosis Service	030.000m	030.000m	
		002.588m	002 588m	

Meaning of the parameter: The min adjustment corresponds to the empty position, as shown in the following figure.

5.2.2 Max. Adjustment

Display of button operations: Press the [OK] button on the main interface to enter the menu interface. In this interface, locate the basic settings interface and press the [OK] button to enter the basic settings interface. In the basic settings interface, use the [\triangleright] buttons to find the max adjustment interface. Press the [OK] button again in this interface to enter the parameter settings interface. You can adjust the parameters according to your needs.

Graphic and text instructions: It is basically the same as 5.2.1.

Parameter meaning: The max adjustment corresponds to the position when it is full of materials.

5.2.3 Medium

Display of button operations: After pressing the [OK] button on the main interface, you will enter the menu interface. On this interface, find the Basic Settings interface and press the [OK] button to enter the Basic Settings interface. In the Basic Settings interface, press the [\triangleright] buttons to find the Medium interface. Press the [OK] button again on this interface to enter the parameter settings interface. You can adjust the parameters according to your needs.

Graphic and text instructions: Set the medium to Demonstration.

Medium Solid
Demonstration

Note: The parameters under the Medium (such as the dielectric constant of the liquid) can be selected according to your needs.

5.2.4 Damping

Display of button operations: Press the [OK] button on the main interface, and you will enter the menu interface. On this interface, find the Basic Settings interface and press the [OK] button to enter the Basic Settings interface. In the Basic Settings interface, press the [\triangleright] buttons to find the Damping interface. Press the [OK] button again on this interface to enter the parameter settings interface. You can adjust the parameters according to your needs.

Graphic and	text instructions:	Set the	damping	time t	to 0 s.
-------------	--------------------	---------	---------	--------	---------

 Basic Settings 	Damping	Damping
Display Diagnosis Service	000 s	000s

Meaning of the parameter: The larger the damping time is set, the stronger the anti-interference ability of the signal will be. For example, setting the damping to 5 s can change an instantaneous change into a slow change.

5.2.5 Sensor Tag

Display of button operations: After pressing the [OK] button on the main interface, you will enter the menu interface. On this interface, find the Basic Settings interface and press the [OK] button to enter the Basic Settings interface. In the Basic Settings interface, press the [▶] buttons to find the Sensor Tag interface. Press the [OK] button again on this interface to enter the Parameter Settings interface. You can adjust the parameters according to your needs.

Graphic and text instructions: Set the sensor tag as CSB-SENSOR.

 Basic Settings Display Diagnosis Service 	Sensor Tag CSB - SENSOR	Sensor Tag
--	----------------------------	------------

5.2.6 Scaled

Note: After setting the Scaled, you need to set the display content as the Scaled so that the specified Scaled value can be displayed on the main interface.

5.2.6.1 Linear

Distance Volume

Mass

Flow

Principle of linear: After the user sets the unit of linear and the scaled values for 0% and 100%, the scaled value will be output in the form of the scaled according to the percentage of the current material level.

Display of button operations: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Basic Settings interface and press the [OK] button to enter the Basic Settings interface. In the Basic Settings interface, press the $[\blacktriangleright]$ buttons to find the Scaled interface. On this interface, find the Linear interface and press [OK] to enter the linear, and then set the Scaled unit according to the required scaled unit. The scaled value of the linear can be set in the item of the scaled value in the basic settings.

Graphic and text instructions for the unit of linear: Set the unit of linear calibration as kg.

 Basic Settings Display Diagnosis Service 	Scaled Linear	Scaled ► Linear Nonlinear Volume Scalar
Linear	Scaled	

kg

t

lb

Graphic and text instructions for the scaled values: Set the scaled value for 0% as 0, and the scaled value for 100% as 10.

 Basic Settings Display Diagnosis Service

Scaled Value 0%:00.000 100%:10.000 Scaled Value 0%:☑0.000 100%:10.000

5.2.6.2 Nonlinear

Display of button operations: After pressing the [OK] button on the main interface, you will enter the menu interface. On this interface, find the Basic Settings interface and press the [OK] button to enter the Basic Settings interface. In the Basic Settings interface, press the [\triangleright] buttons to find the scaled interface. On this interface, find the Nonlinear interface and press the [OK] button to set the scaled mode as nonlinear.

5.2.6.3 Volume Scalar

Display of button operations: After pressing the [OK] button on the main interface, you will enter the menu interface. On this interface, find the Basic Settings interface and press the [OK] button to enter the Basic Settings interface. In the Basic Settings interface, press the [\triangleright] buttons to find the Scaled interface. On this interface, find the Volume Scalar interface and press the [OK] button to enter the Volume Scalar interface. Calibrate the volume according to the shape of the current container corresponding to the volume scalar shape. After entering, set the corresponding parameters and press the [OK] button to complete the setting of the volume Scalar parameters.

Graphic and text instructions: Set the volume scalar as rectangular, and set the parameter L1 as 10 m and L2 as 10 m.

5.2.7 Range Set

Display of button operation: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Basic Settings interface and press the [OK] button to enter the Basic Settings interface. In the Basic Settings interface, press the $[\triangleright]$ buttons to find the Range Set interface. Press the [OK] button again on this interface to enter the parameter settings interface. You can adjust the parameters according to your needs.

Graphic and text instructions: It is basically the same as 5.2.1.

Meaning of parameters: The measuring range limits the maximum values of various parameters, and the echo area exceeding the measuring range will not be selected.

5.2.8 Blind Zone Set

Display of button operations: After pressing the [OK] button on the main interface, you will enter the menu interface. On this interface, find the Basic Settings interface and press the [OK] button to enter the Basic Settings interface. In the Basic Settings interface, press the [\triangleright] buttons to find the Blind Zone Set interface. Press the [OK] button again on this interface to enter the parameter settings interface. You can adjust the parameters according to your needs.

Graphic and text instructions: It is basically the same as 5.2.1.

Meaning of the parameter: The function of the blind zone set is to exclude the echo area smaller than the blind zone from being selected.

5.2.9 Feed Rate

Display of button operations: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Basic Settings interface and press the [OK] button to enter the Basic Settings interface. In the Basic Settings interface, press the [\triangleright] buttons to find the Feed Rate interface. Press the [OK] button on this interface to enter. After the setting is completed, press the [OK] button again to finish the setting.

Graphic and text instructions: Set the speed of material feeding and discharging to 1 m/s.

Meaning of the parameter: By setting the Feed Rate, the anti-interference ability can be improved. If the change speed of the target distance exceeds the speed threshold, it indicates that there is an anomaly in the currently detected target, which may be an interference signal. The device will continuously detect and output the position of the real target.

5.2.10 OverlimitOutput

Display button operation: After pressing the [OK] button on the main interface, you will enter the menu interface. In this interface, find the basic settings interface and press the [OK] button to enter the basic settings interface. In the basic settings interface, press the $[\blacktriangleright]$ buttons to find the overlimit output settings interface. Press [OK] in this interface to enter the settings for overlimit output. After the settings are completed, press [OK] to finish the settings. The parameters can be selected for Max. adjustment and Min. adjustment. The function of this item is as follows: When no target is detected within the Min. value range, the device can output the Max. adjustment value or the Min. adjustment value according to the selected parameters.

5.3 Display menu introduction

5.3.1 Display Content

Display of button operations: After pressing the [OK] button on the main interface, you will enter the menu interface. On this interface, find the Display interface and press the [OK] button to enter the Display interface. In the Display interface, press the [\triangleright] buttons to find the Display Content interface. On this interface, you can set the display content according to the content you need to display. The content that can be set includes distance, space, level, scaled, current, and percent.

Graphic and text instructions: Set the display content as the distance.

Basic Settings ► Display	Display Content	Display Content ► Distance
Diagnosis Service	Level	Space Level

Meaning of the parameter: By setting the display content, the corresponding value can be shown on the main interface, and this value will also correspond to the item of "primary variable" in the HART

standard communication protocol.

5.3.2 Language

Display of button operations: After pressing the [OK] button on the main interface, you will enter the menu interface. On this interface, find the Display interface and press the [OK] button to enter the Display interface. In the Display interface, press the [▶] buttons to find the Language interface. On this interface, you can set the language according to your needs. The languages that can be set include Chinese, English, Spanish, Russian, and Korean.

Graphic and text instructions: Set the language as English.

Basic Settings	Language	Language
 Display Diagnosis Service 	English	Chinese ► English Spanish

5.3.3 Measuring Unit

Display of button operations: After pressing the [OK] button on the main interface, you will enter the menu interface. On this interface, find the Display interface and press the [OK] button to enter the Display interface. In the Display interface, press the [\triangleright] buttons to find the Measuring Unit interface. On this interface, you can set the unit according to the required unit. The units that can be set include ft, m, in, cm, and mm.

Graphic and text instructions: Set the measuring unit as m.

Note: After setting the measuring unit, the parameters related to the unit (such as the min and max adjustment values, the range set, etc.) will all use this unit.

Meaning of the parameter: By setting the measuring unit, the distance measurement unit can be changed.

5.3.4 Temperature Unit

Display of button operations: Press the [OK] button on the main interface, and you will enter the menu interface. On this interface, find the Display interface and press the [OK] button to enter the Display interface. In the Display interface, press the [\triangleright] buttons to find the Temperature Unit interface. On this interface, you can set the unit according to the required temperature unit. The units that can be set include °C, °F, and K.

Graphic and text instructions: Set the temperature unit as $^{\circ}C$.

Basic Settings ► Display	Temperature Unit	Temperature Unit ▶ ℃
Diagnosis Service	°C	°F K

Meaning of the parameter: By setting the temperature unit, the temperature unit can be changed in the measuring interface.

5.4 Diagnosis menu introduction

5.4.1 Peak Value

Display of button operations: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Diagnosis interface and press the [OK] button to enter the Diagnosis interface. In the Diagnosis interface, press the [▶] buttons to find the Peak Value interface. On this interface, you can view the maximum and minimum peak values.

Graphic and text instructions: View the measurement peak values.

Basic Settings	Peak Value
Display	MaximumPeak 12.300m
 Diagnosis Service 	MinimumPeak 00.300m

Note: This parameter reflects the maximum and minimum peak values measured during the measurement, and its parameters cannot be set through the LCD.

5.4.2 Measure Status

Display of button operations: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Diagnosis interface and press the [OK] button to enter the Diagnosis interface. In the Diagnosis interface, press the $[\blacktriangleright]$ buttons to find the Measure Status interface. On this interface, you can view the current measurement dB value and the temperature of the sensor. The dB value reflects the intensity of the current signal, and the sensor temperature is the internal temperature of the current device.

Graphic and text instructions: View the measurement status.

Note: This parameter cannot be set through the LCD, it can only be viewed through it.

5.4.3 History Curve

Display of button operations: After pressing the [OK] button on the main interface, you will enter the menu interface. On this interface, find the Diagnosis interface and press the [OK] button to enter the Diagnosis interface. In the Diagnosis interface, press the [\triangleright] buttons to find the History Curve interface. After finding the Total Time option in this interface and pressing the [OK] button, you can set how long a curve you want to display from the current time. After finding the Show Curve option in this interface and pressing the [OK] button, the curve can be displayed according to the currently set total time.

Note: The ordinate of the historical curve represents the measuring range. When the measuring range changes, the maximum value of the ordinate will also change to the corresponding measuring range.

5.5 Service menu introduction

5.5.1 False Echo

Display of button operations: Press the [OK] button on the main interface, and you will enter the menu interface. On this interface, find the Service interface and press the [OK] button to enter the Service interface. In the Service interface, press the $[\triangleright]$ buttons to find the False Echo interface. Then, perform the update or delete operation of the false echo learning according to your needs.

Graphic and text instructions: Update the false echo learning.

Basic Settings	False Echo	False Echo
Display	Update	Start 000.000m
Diagnosis	Delete	End 001.500m
Service		RSSI 001dB

Meaning of the parameter:By setting two values for the start and the end, the device can learn about the distance segment with false echoes. After the learning is completed, the wrong waveform will be encapsulated, so that the device will not search for the wrong waveform for distance measurement. The display is as shown in the figure.

When there is a real liquid level surface, the learning area should not cover it. There is a default value for the signal intensity inside, and generally, 0 dB is sufficient.

Diagram before False echo learning

Diagram after False echo learning

5.5.2 Current Output 5.5.2.1 Output Mode

Display of button operations: Press the [OK] button on the main interface to enter the menu interface.

On this interface, find the Service interface and press the [OK] button to enter the Service interface. In the Service interface, press the [\triangleright] buttons to find the Current Output interface. Press the [OK] button on this interface, then select the current output and set the output mode to either 4-20mA or 20-4mA. **Graphic and text instructions:** Set the current output mode to 4-20mA.

Basic Settings Display Diagnosis ► Service	Current Output ► Output Mode Fail Current Min Current	Current Output • 4-20mA 20-4mA
---	--	--------------------------------------

Meaning of the parameter: Setting the current output mode allows for switching between the forward and reverse current output.

5.5.2.2 Fail Current

Display of button operation: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Service interface and press the [OK] button to enter the Service interface. In the Service interface, press the [\triangleright] buttons to find the Current Output interface. Press the [OK] button on this interface, then select the Fail Current item and set the fail current as keep / 20.5mA / 22.0mA / 3.9mA.

Graphic and text instructions: Set the fail current to keep.

Basic Settings	Current Output	Fail Current
Display	Output Mode	► Keep 3.9mA
Diagnosis	Fail Current	20.5mA
► Service	Min Current	22.0mA

Meaning of the parameter: Setting the fail current allows the corresponding current to be output when a fault occurs.

5.5.2.3 Min Current

Display of button operations: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Service interface and press the [OK] button to enter the Service interface. In the Service interface, press the [▶] buttons to find the Current Output interface. Press the [OK] button on this interface, then select the Min Current item and set the minimum current to either 3.9mA or 4.0mA.

Graphic and text instructions: Set the minimum current to 4mA.

Basic Settings Display	Current Output Output Mode	Current Output ► 4mA	
Diagnosis	Fail Current	3.9mA	
▶ Service	► Min Current		

Meaning of the parameter: The output current value shall not be less than the set value of the mini current

5.5.3 Reset

Display of button operations: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Service interface and press the [OK] button to enter the Service interface. In the Service interface, press the [▶] buttons to find the Reset interface. After pressing the [OK] button, enter the Reset Selection interface. Find the Factory Reset, press the [OK] button, after waiting for a period of time, the reset will be completed.

Graphic and text instructions: Reset to factory settings.

Basic Settings Display Diagnosis ► Service

Reset Factory Reset Peak Reset

Meaning of the parameter: Restore to factory settings.

5.5.4 Par Backup

Display of button operations: Press the [OK] button on the main interface, and you will enter the menu interface. On this interface, find the Service interface and press the [OK] button to enter the Service interface. In the Service interface, press the [▶] buttons to find the Par Backup interface. After entering this interface, you can perform parameter backup or reading according to your needs.

Graphic and text instructions: Data backup.

Basic SettingsDisplayDiagnosisService

Par Backup ▶ Data Backup Data Reading

Meaning of the parameter: After setting the data backup, the currently configured parameters can be backed up, so as to prevent the previous state from being unrecoverable in case external personnel make changes.

5.5.5 Password

Display of button operations: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Service interface and press the [OK] button to enter the Service interface. In the Service interface, press the $[\blacktriangleright]$ buttons to find the Password interface. After entering, you can set to enable the password or disable the password.

Graphic and text instructions: Enable the password.

Password Disable ► Enable

Meaning of the parameter: After setting the password, when most parameters in the device's menu bar need to be reset, the specified password will be required to be entered.

When you forget the unlocking password, request the unlocking password from the manufacturer. You need to provide the device's serial number when making the request.

5.5.6 Local Address

Display of button operations: After pressing the [OK] button on the main interface, you will enter the menu interface. In this interface, find the service interface and press the [OK] button to enter the service interface. In the service interface, press the [▶] buttons to find the local address interface. After entering,

you can set the local HART address to a value between 0 and 15 according to your needs. This address is related to HART communication. When the HART address is set to a value other than 0, the device will only be able to output a current of 4mA, and at this time, the device is in the calibration state. The address of RS485 can be set to a value between 1 and 255.

Graphic and text instructions: Set the local HART address to 1.

Basic Settings	Local Addr
Display Diagnosis ► Service	01

Meaning of the parameter: After setting the local HART address, the command sent via the HART standard protocol needs to be consistent with the local address. It mainly functions in the communication mode of multiple devices on a single bus.

5.5.7 Offset Distance

Display of button operations: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Service interface and press the [OK] button to enter the Service interface. In the Service interface, press the [\triangleright] buttons to find the Offset Distance interface. After entering, you can set the offset according to your needs. The set value is the difference between the radar measured value and the actual value. If the measured value is greater than the actual value, enter a - sign. On the contrary, enter the + sign. For example, the actual value is 7.555m, while the radar measurement value is 7.558m. The offset is set to+0.003m.

Graphic and text instructions: Set the offset to +0.003m.

Basic Settings	Offset Distance
Display Diagnosis Service	+ <mark>0</mark> 00.003m

Meaning of the parameter: By setting the offset distance, the distance measurement can be calibrated. So that the radar can measure more accurate.

5.5.8 Current simulation and calibration

5.5.8.1 Current Simulation

Display of button operations: Press the [OK] button on the main interface, and you will enter the menu interface. On this interface, find the Service interface and press the [OK] button to enter the Service interface. In the Service interface, press the [▶] buttons to find the Current Simulation interface. After entering, you can output the corresponding simulated current according to your needs. You can operate with 5.5.8.2 current calibration.

Graphic and text instructions: Current simulation at 4mA.

Basic Settings	Current Simulation
Display Diagnosis Service	0 4 . 000 _{mA}

Meaning of the parameter: Output the specified simulated current, which can also be used for the calibration of 4mA and 20mA currents.

5.5.8.2 Current Calibration

Display of button operations: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Service interface and press the [OK] button to enter the Service interface. In the Service interface, press the [\triangleright] buttons to find the Current Calibration interface. Set the corresponding calibration values according to the offsets corresponding to the simulated current outputs of 4mA and 20mA.

Graphic and text instructions: Set the calibration offset for 4mA to 0.004mA and the calibration offset for 20mA to 0.01mA.

Meaning of the parameter: After setting the current calibration, the current will more accurate.

5.5.9 TVT level

Display of button operations: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Service interface and press the [OK] button to enter the Service interface. In the Service interface, press the $[\blacktriangleright]$ buttons to find the TVT Level interface. Then, you can set the TVT Level value according to your needs. After setting the TVT Level to N dB, the envelope curve will be raised by N dB overall.

Graphic and text instructions: Set the TVT margin to 5dB.

Meaning of the parameter: After setting the TVT Level, the entire envelope curve will be shifted upward by NdB.

5.6 Info menu introduction

Display of button operations: Press the [OK] button on the main interface to enter the menu interface. On this interface, find the Info interface and press the [OK] button to enter the Info interface. In the Info interface, press the [▶] buttons to view the relevant content.

Meaning of the parameter: You can view some basic information of the current device, such as Sensor Type, Serial Number, Date(date of manufacture), and Software Version.

5.7 UartConfig menu introduction (this parameter is not available for twowire instruments)

5.7.1 Baud

Meaning of the parameter: Adjust the communication rate of the RS485 output. Available settings: 1200, 2400, 4800, 9600, 14400, 19200, 38400, 56000, 115200, 256000, 460800, 500000, 512000, 600000, 750000, 921600, 1000000, 1500000, 2000000 bps.

5.7.2 Parity

Meaning of the parameter: Set the parity check method for UART data. Available options: None, Odd, Even.

Info	Parity
 Uart Config Alarm Settings 	None

5.7.3 Stop bits

Meaning of the parameter: It is the flag indicating the end of data transmission in UART communication. Available options: 1, 1.5, 2.

Info ▶ Uart Config	Stop Bits
Alarm Settings	

5.8 Alarm Settings menu introduction (this parameter is not available for two-wire instruments)

5.8.1 Alarm Mode

Meaning of the parameter: Select whether it is an up alarm, a down alarm, or off the alarm.

5.8.2 Initial state

Meaning of the parameter: The relay contact is SPST. This parameter is used to select

whether the initial state of the relay is normally open or normally closed.

5.8.3 Alarm value

Meaning of the parameter: A pre-set value used to trigger an alarm.

5.8.4 Hysteresis value

Meaning of the parameter: The alarm hysteresis value refers to the numerical difference. After the monitored parameter exceeds the alarm setting value and triggers an alarm, the parameter needs to change in the opposite direction by a certain value before the alarm can be canceled. In simple terms, it is the difference between the alarm trigger value and the alarm recovery value.

Info	Hysteresis value
Uart Config Alarm Settings	001.000m

The setting parameters for the two alarm channels are the same, so they won't be listed one by one. For the alarm mode, please refer to the following figure. In the figure, "Value" represents the alarm value, and "Hysteresis value" represents the hysteresis value.

6. Fault Parameter Description

Alarm Code	Triggering Reason	Solution
		Check whether the wiring of the
E020	The antenna has an abnormal	circuit board is in good condition;
	contact, or there is an abnormal	check whether there are many
	communication with the antenna.	interfering signals around; contact
		the manufacturer.

7. Register List

Instruction	CRC	Number	Register	Function	Address
			address	code	
Space (Unit: cm)	840A	0001	0000	03	01
Space (Unit: mm)	D5CA	0001	0001	03	01
Level (Unit: cm)	25CA	0001	0002	03	01
Level (Unit: mm)	740A	0001	0003	03	01
Space (Float32)	8400	0002	0024	03	01
Level (Float32)	25C0	0002	0026	03	01
Distance (Float32)	4403	0002	0028	03	01
Current (Float32)	6401	0002	0022	03	01
Temperature (Float32)	E5C3	0002	002A	03	01
Percentage (Float32)	05C2	0002	002C	03	01

7.1 Read variable values

7.2 Common parameter register

Parameter	Register	Function	Data type	Instruction
	address	code		
Medium	0x003E	0x03,0x10	uint16	0x0000:Solid
				0x2000:Liquid
				0x4000 Demonstration
Damping	0x0040	0x03,0x10	Float32	
Blind zone set	0x0042	0x03,0x10	Float32	
Range set	0x0044	0x03,0x10	Float32	
Min. Adjustment	0x0046	0x03,0x10	Float32	
Max. Adjustment	0x0048	0x03,0x10	Float32	
Offset distance	0x0050	0x03,0x10	Float32	
The shape of solid material particles	0x0080	0x03,0x10	uint16	0 : Powder 1 : Micro particles2 : Large particles
The dielectric constant of the liquid material	0x0081	0x03,0x10	uint16	0: <3 1: 3-10 2: >10
Working mode of liquid materials	0x0082	0x03,0x10	uint16	0: Default mode 1: Fast stirring 2: Medium-speed stirring 3: Slow stirring
Baud rate	0x1705	0x03,0x10	uint16	0-1200 1-2400 2-4800 3-9600 4-14400 5- 19200 6-38400 7-56000 8-115200 9-256000 10-460800 11-500000 12-512000 13- 600000 14-750000 15-921600 16-1000000 17-1500000 18-2000000
Address	0x1706	0x03,0x10	uint16	1-254
Parity and stop bit	0x1707	0x03,0x10	uint16	Parity (high 8 bits): 0: No parity 1: Odd parity 2: Even parity Stop bit (low 8 bits):
				0: 1 stop bit 1: 1.5 stop bits 2: 20 stop bits

